

Agenda

Two Bayesian designs for first-inhuman trials in cancer

- Quick intro to first-in-human trials in cancer
- Continual Reassessment Method (CRM)
 - modified CRM (mCRM)
- Bayesian Optimal Interval Design (BOIN)

3

Credits & Thank You

CRM

Dr Ulf Forssmann, Sr Medical Director, Genmab A/S

- advocate of CRM + significant modifications

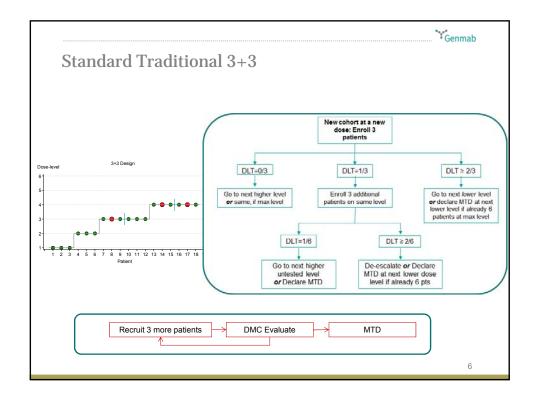
Kert Viele & *Anna McGlothlin*, Berry Consultants Inc.

- Implementation and advice

BOIN

Dr Ulf Forssmann

CRM + BOIN

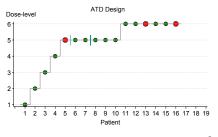

Henning Friis Andersen, Genmab A/S

Thomas Bayes (1701?-April 7 1761) • Nonconformist minister • Tunbridge wells, 70 km SE of London • No mathematical/statistical publications • Unknown/uninfluential on his contemporaries • Made Fellow of the Royal Society 1741 • Richard Price read his work to the RS on Dec 23 1763 • "An assay towards solving a Problem in the Doctrine of Chances" (1764) • One of the most widely known eponyms in Science today • Laplace, independently, developed same/similar ideas 1774 The History of Statistics, The Measurement of Uncertainty before 1900, Stephen M Stigler, 1986, Belknap Harvard University Press

Dose Limiting Toxicities (DLTs)

Table 5-2	Criteria	for defining	dose-limiting	toxicities

Toxicity	Any of the following criteria:				
Hematology	≥ CTCAE grade 3 neutropenia (ANC < 1.0 x 10 ⁹ /L)				
	≥ CTCAE grade 3 thrombocytopenia (platelets < 50 x 10 ⁹ /L)				
	≥ CTCAE grade 3 anemia (Hgb < 8.0 g/dL)				
	Febrile neutropenia (ANC < 1.0 x 10 ⁹ /L, fever ≥ 38.5°C)				
Renal	Serum creatinine > 2 x ULN				
Hepatic	≥ CTCAE grade 3 total bilirubin (> 3 x ULN)				
	≥ CTCAE grade 2 total bilirubin and ≥ CTCAE grade 2 ALT				
	≥ CTCAE grade 3 ALT				
Pancreatic	≥ CTCAE grade 2 pancreatitis				
	≥ CTCAE grade 3 amylase or lipase				
Cardiac	≥ CTCAE grade 3				
Dermatologic	≥ CTCAE grade 2 phototoxicity				
	Any skin toxicity or rash resulting in interruption of LDK378 for >21 consecutive days				
Ocular	Any ≥ CTCAE grade 3				
Other adverse events	CTCAE grade 3 vomiting or nausea despite optimal anti-emetic therapy				
	≥ CTCAE grade 3 diarrhea despite optimal anti-diarrhea treatment				
	Any ≥ CTCAE grade 3 AE, except for the exclusions noted below				
	In view of the Investigators and Novartis any other unacceptable toxicity encountered				
Exceptions to DLT	CTCAE grade 3 or 4 elevations in alkaline phosphatase				
criteria	< 72 hours of CTCAE grade 3 fatigue				
CTCAE version 4.0 will be u	used for all grading.				
Patients may receive suppo	rtive care (eg. PRBCs) as per local institutional guidelines.				
Optimal therapy for vomiting the prohibited medications I	g or diarrhea will be based in institutional guidelines, with consideration of isted in this protocol.				
	ent; ALT, alanine aminotransferase; ANC, absolute neutrophil count; CTCAE, for Adverse Events; DLT, dose-limiting toxicity; PRBC, packed red blood cells;				


Shaw AT et al, Ceritinib in ALK-Rearranged Non–Small-Cell Lung Cancer, NEJM 370:13, pp1189-1197, protocol in appendix

.

Genmab

Accelerated Titration Design (ATD)

- Just like 3+3, but with one difference
- Initial cohorts: single-patient cohorts.
 - With or without intra-patient dose-escalation
- Continue with single-patient cohorts until:
 - DLT (or other relevant toxicity) seen, or
 - reached a "high" dose-level
- Thereafter, continue as 3+3

Trial designs in Phase I Cancer Trials

- Estimate from 20071
 - 1991-2006: 1235 abstracts from Phase I Cancer Trials
 - 98.4 % step-up-step-down designs
 - 1.6% (n=20) Bayesian adaptive designs
- · More recent estimate:
 - · 49% 3+3
 - 40% Accelerated Titration Design
 - 10% Bayesian CRM

¹ Rogatko A et al, Translation of Innovative Designs Into Phase I Trials, JCO, 25; 31, pp 4982-4986, 2007

9

Use of CRM at Novartis

- Novartis:
 - Before 2000: the 3+3 design
 - In 2000
 - · two trials with CRM
 - both failed (too aggressive dose-recommendations)
 - ~2004: another attempt (2-parameter Bayesian Logistic Regression)
 - Success
 - 2005: CRM is the new Novartis standard
 - Global phase I and Ib: 100%
 - > 60 trials, >30 compounds, >20 FIH

American Statistical Association Webinar, Bailey S, Neuenschwander B, April 27, 2011 FDA-Industry Workshop 2015, Roychoudhury, Neuenschwander, Wandel, Bayesian Adaptive Phase I Oncology Trials, September 2015

CRM 1/2

- Introduced in: O'Quigley J, Pepe M, Fisher L. Continual reassessment method: A practical design for Phase I clinical trials in cancer. Biometrics. 1990;46:33–48
- Start by assuming a functional relationship between Dose and DLT:
 - $\log\left(\frac{p_{DLT}}{1-p_{DLT}}\right) = \alpha + \beta \cdot dose$

- Bayesian logistic regression: $\alpha\&\beta \ are \ not \ fix \ parameters \ but \ have \ distributions$
- Early: α fixed (e.g. 3) \Rightarrow one-parameter logistic regression model
- NB; not actual doses used in model: "dose labels" or "standardized doses" used
- Define Target Toxixity Level (TTL): e.g. 17%-33%
 - The aim is to have TTL DLT-rate on MTD

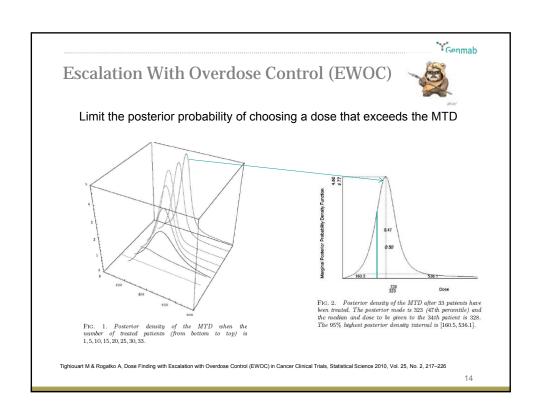
11

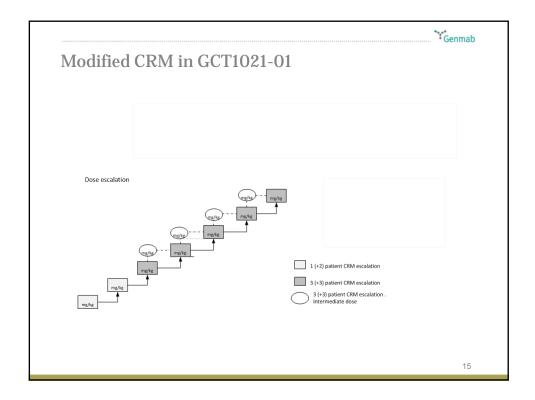
CRM 2/2

Step

The Continual Re-assessment Method

Jiep	
1	Assume prior for θ
2	Treat 1 patient, at dose level closest to current estimate of the MTD
3	Observe DLT outcome
4	Compute posterior and update β : Treat the next patient at the level closest to the updated estimate of the MTD, based on posterior distribution of β .
	Treat the next patient at model-based MTD-estimate:
	$d_{i+1} = \arg \min_{d_k} p(d_i, \hat{\beta}_i) - TTL ,$
	where $p(d_i, oldsymbol{eta})$ = probability of DLT on dose-level i ,
	$\hat{\beta_i} = \frac{\int_{-\infty}^{\infty} \beta L_i(\beta; \ \boldsymbol{d}, \boldsymbol{y}) dF(\beta)}{\int_{-\infty}^{\infty} L_i(\beta; \ \boldsymbol{d}, \boldsymbol{y}) dF(\beta)}$
	as well as
	$L_i(\beta; d, y) = \prod_{i=1}^{i} p(d_i, \beta)^{DLT_i} [1 - p(d_i, \beta)]^{1 - DLT_i},$
	$F(\beta)$: a priori distribution for β , d_i : dose level for patient j , DLT_i : DLT outcome $(0, 1)$
	for patient j.
	Compute by numerical integration, e.g. MCMC.
5	Repeat Steps 1-5 until sufficient precision in estimate of θ , or N_{max} reached.
	MTD= the dose that would have been given to the $(N+1)^{st}$ patient.




Safety concerns with the original CRM

Safety concerns:

- Starts at the expected MTD
- · Goes straight for the MTD

Modifications proposed: modified CRM

Modified CRM in GCT1021-01

- First-in-Human: Do not start at MTD, start low
- 3 patients per cohort
 - However, single-patient cohorts the first 2 dose-levels
- · Main dose-levels and intermediate dose-levels
 - Escalate on main dose-levels until DLT observed, then intermediate dose-levels available
- Restricted dose-allocation: escalate one main dose-level at the time
- Escalation With Overdose Control

GCT1021-01 -before we start

Genmab

- Assumed DLT-rates at dose-levels
 - 8 different scenarios
- Target Toxicity Level (on MTD): 22%
- Escalation with overdose control (EWOC)
 - Escalate to a "safe" dose level; level safe if $Pr(p_{DLT}(d) < 22\%) > 40\%$.
- Total N_{max}=41,
 - need 20-30 patients for CRM to work
- Prior distribution....

Genmab

mCRM in GCT1021-01 – historical data for the prior

Overview of start dose and MTD in some (MMAE-) ADC Phase 1 trials1

		Drug					Dose	
Drug	Name	Company	Target	Linker	Indication	Ph1 Doses (mg/kg)	Ph1 Regimen	MTD (mg/kg)
Adcetris	Brentuximab vedotin	Seattle Genetics	CD30	VC	HL & ALCL	0.4-1.4 1.2-2.7*	Q1W Q3W	1.8
CDX-011	Glembatumumab vedotin	Celldex	GPNMB	vc	Breast	- - 0.03-2.63	Q1W Q2/3W Q3W	1.88
DCDT2980S	Pinatuzumab vedotin	Genentech/ Roche	CD22	MC-VC- PABC	NHL & DLBCL	0.1-3.2	Q3W	2.4
PSMA-ADC		Progenics	PSMA	VC	metCRPC	0.4-2.8	Q3W	2.5
DCDS4501A	Polatuzumab vedotin	Genentech/ Roche	CD79n	MC-VC- PABC	NHL & DLBCL	0.1-2.4	Q3W	In Ph2: '2.5 or 2.3'. Latter 'appropriate' ²
ASG5E	-	Agensys (Astellas)	SLC44A4	Vc	Prost, gastr & pancr	0.3-1.5 0.3-3	Q1W Q3W	1.2 2.4
MLN0264	-	Millenium	Guanylyl cyclase C	ND	GI	0.3-1.8	Q3W	ND but >=1.8 ³
HuMax-TF- ADC ⁴	Tisotumab vedotin	Genmab	TF	VC	Solid tumors	0.3-2.6	Q3W	2.0

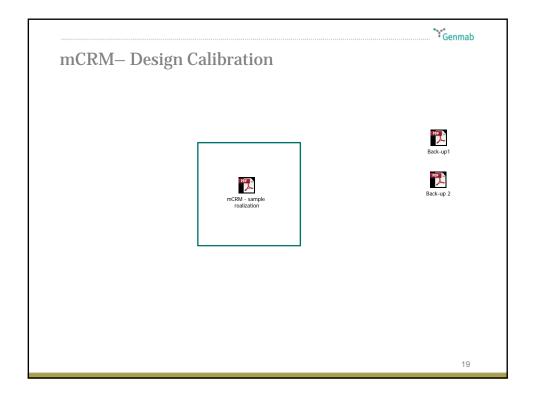
ND-No Data

* 1 patient dosed at 3.6 mg/kg

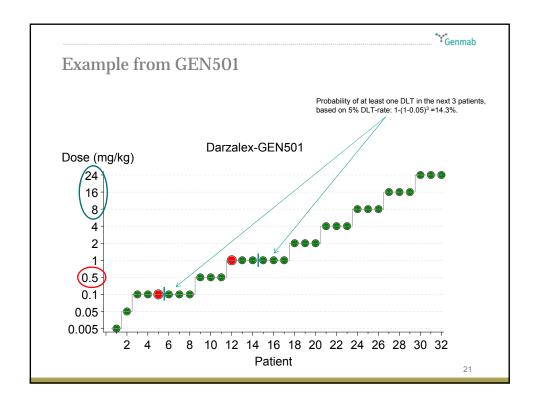
* 1 patient dosed at 3.6 mg/kg

* 1 patient dosed at 3.6 mg/kg

* 2 person to 1.8 mg/kg


* 3 person to 1.8 mg/kg

* 3 person to 1.8 mg/kg in first 10 patients


* 4 person to 1.8 mg/kg in first 10 patients

* 5 no DLTs in doses up to 1.8 mg/kg in first 10 patients

* 6 normab

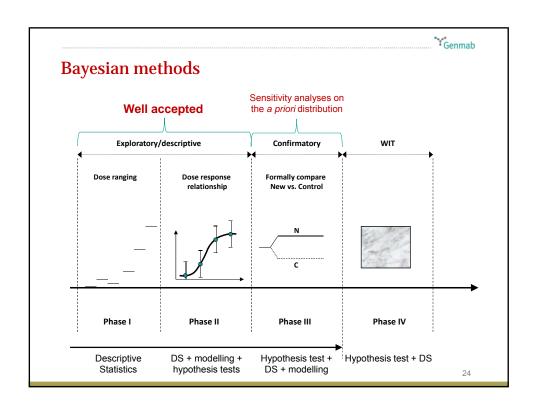
MCRM in GCT1021-01 Allows for flexibility in cohort sizes In case of a drop-out: 2 patients, or 5 patients In case of over-recruitment: 4 patients, 7 patients ... Better estimate of MTD More patients exposed to efficacious dose-levels Efficacy information available earlier, before cohort-expansion

Other version of the CRM

- · Many modifications of CRM
- TITE-CRM (time to event CRM)
- Pharmacologically guided CRM
- · Maximum Likelihood-versions of CRM
- •

Regulatory guidelines

· Bayesian statistics

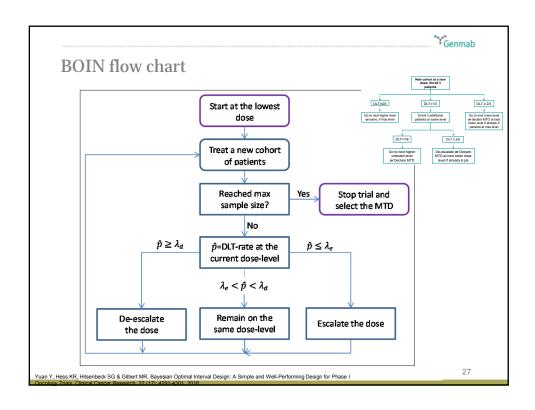

- ICH E9
 - · Just mentions that it exists

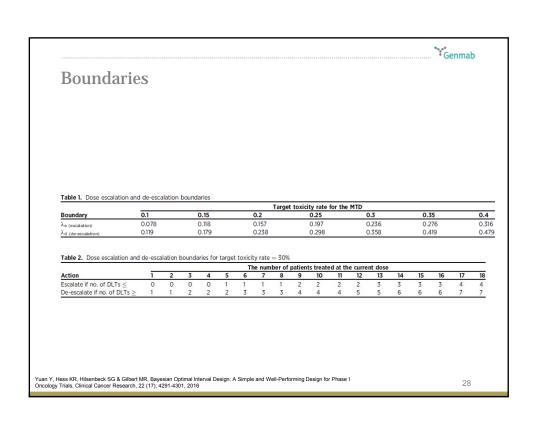
• FDA

- "Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials".
 - 'Non-medical-device'-divisions (CDER/CBER) refer to it.

• EMA

- · No specific guidance
- Mentioned in other guidances, e.g. 'Guideline on clinical trials in small populations': "Such [Bayesian] methods may be advantageous when faced with small datasets, although introducing prior beliefs is often a concern in drug regulation."


.....Genmab


Stakeholder interactions

- Internal
- External
 - KOLs
 - Regulatory authorities

25

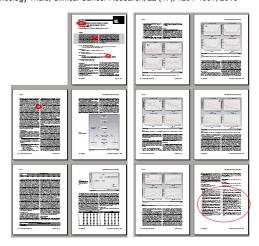
Genmab Software - CRM SAS Chang M, Adaptive Design Theory and Implementation Using SAS and R, Second Edition, CRC, Chapman and Hall, 2014 1-parameter power: $p_i^{e^{\alpha}}$ Ed. Menon, SM & Zink RC, Modern Approaches to Clinical PROC IML Trials Using SAS, Classical Adaptive and Bayesian Methods, , 1-parameter power: $p_i^{e^{\alpha}}$ SAS Institute, 2015 PROC MCMC Example 54.3 for inspiration DIY R CRM 1-parameter hyperbolic or 1-parameter logistic CRM DFCRM 1-parameter logistic CRM **BCRM** 1-parameter hyperbolic or 1-parameter power or 1-parameter logistic or 2-parameter logistic CRM Partial order CRM – for drug POCRM combination trials etc. + several implementations found online 26

Bayesian Optimal Interval Design - BOIN

- · Similar to 3+3, but
- · Allows flexible cohort sizes
- · May allow re-escalation

Yuan Y, Hess KR, Hilsenbeck SG & Gilbert MR, Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials, Clinical Cancer Research, 22 (17); 4291-4301, 2016

29


BOIN(9,48) boundaries - example

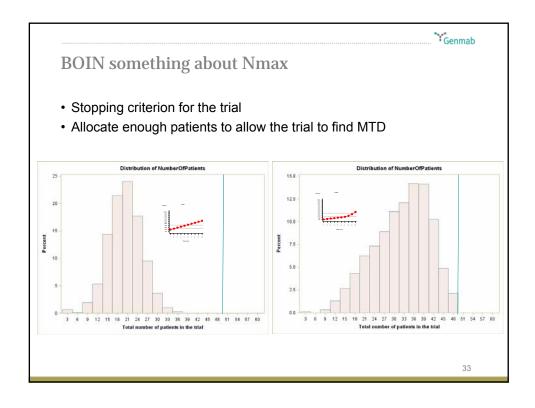
Decision, based on the number	fe	Nun or DI		-					
of patients with DLTs (N_{DLT})	1	2	3	4	5	6	7	8	9
Escalate if $N_{DLT} \le$	0	0	0	0	0	1	1	1	1
Remain on dose-level if N_{DLT} =	-	-	1	1	1	2	2	2	2,3*
De-escalate if $N_{DLT} \ge$	1	1	2	2	2	3	3	3	4
Disallow dose-level if $N_{DLT} \ge$	NA	NA	≥3	≥3	≥3	≥4	≥4	≥5	≥5

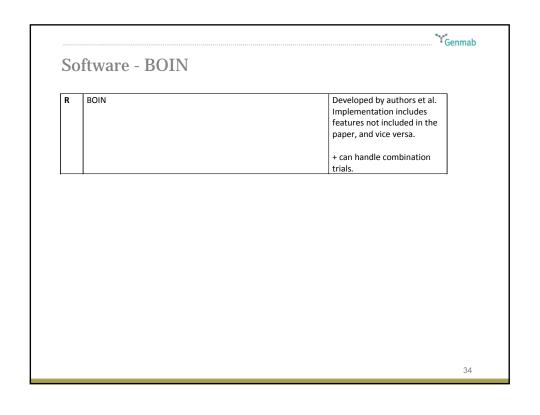
- Trial stops when:
 - the maximum sample size has been reached (e.g. $N_{\rm max}$ =48), or
 - there are n (e.g. n=9) patients evaluable for DLTs on a dose-level, or
 - the lowest dose has been disallowed
- · Allows for flexibility in cohort sizes
 - In case of a drop-out: 2 patients, or 5 patients
 - In case of over-recruitment: 4 patients, 7 patients ...

BOIN – Where's the "Bayes"?

Yuan Y, Hess KR, Hilsenbeck SG & Gilbert MR, Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials, Clinical Cancer Research, 22 (17); 4291-4301, 2016

31



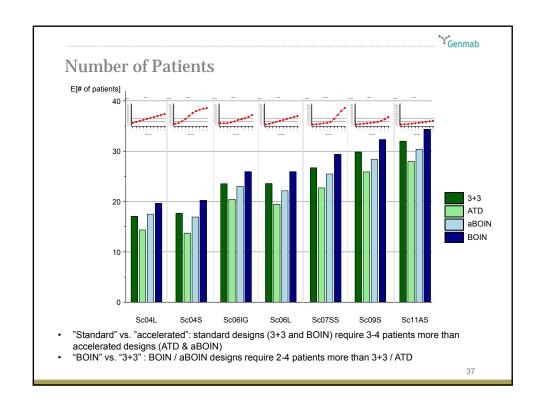

Closer look at the BOIN lambdas

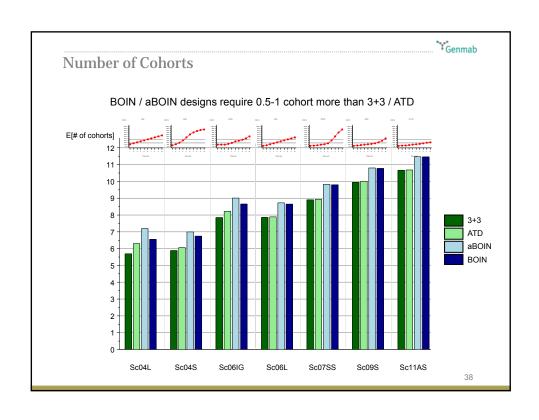
- θ =target toxicity level, θ_1 = lower boundary, θ_2 =upper boundary
- Authors propose, as default, θ_1 =0.6· θ and θ_2 =1.4· θ (e.g. θ =0.3, θ_1 =0.18, θ_2 =0.42)

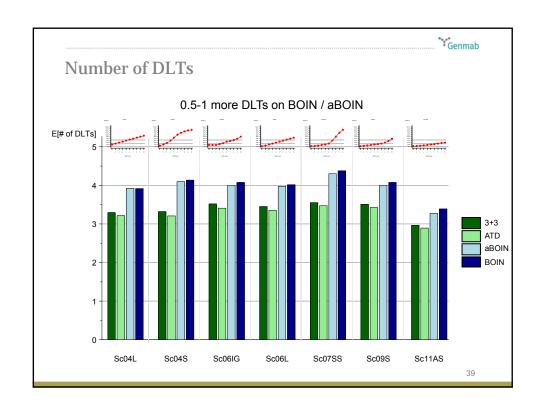
$$\bullet \ \lambda_{e,j} = \frac{\log\left(\frac{1-\theta_1}{1-\theta}\right) + n_j^{-1}\log\left(\frac{\pi_{1j}}{\pi_{0j}}\right)}{\log\left(\frac{\theta_1(1-\theta_1)}{\theta_1(1-\theta)}\right)} \ , \ \lambda_{d,j} = \frac{\log\left(\frac{1-\theta}{1-\theta_2}\right) + n_j^{-1}\log\left(\frac{\pi_{0j}}{\pi_{2j}}\right)}{\log\left(\frac{\theta_2(1-\theta)}{\theta(1-\theta_2)}\right)}$$

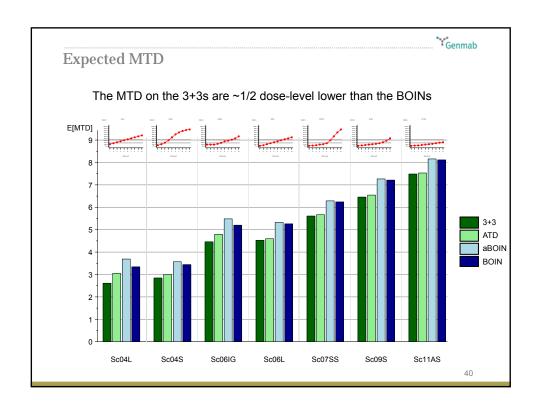
- Let p_i = true toxicity probability for dose-level j.
- Formulate 3 hypotheses: H_{0j} : $p_j=\theta$, H_{1j} : $p_j=\theta_1$, H_{2j} : $p_j=\theta_2$, π_{kj} = $Pr(H_{kj})$ *i.e.* the *a priori* probability of hypothesis *k* being true
- Assign equal a priori probabilities: $\pi_{0j} = \pi_{1j} = \pi_{2j} = 1/3$
 - Renders $\lambda_{e,j}$ and $\lambda_{d,j}$ invariant to j (the dose level)
 - Renders $\lambda_{e,j}$ and $\lambda_{d,j}$ invariant to n_j (sample size on dose level j)

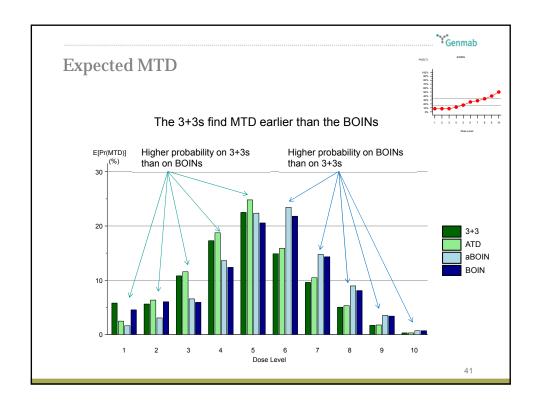
Operational characteristics

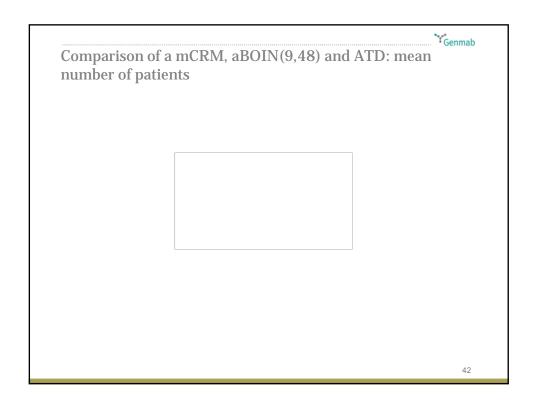

- · Expected total number of patients
- · Expected number of cohorts
- Expected Number of DLTs per dose-level
- · Estimated MTD


35




Some Trial Designs for Next Trial


- 3+3: the standard traditional 3+3 design.
- ATD (accelerated titration design): a version of 3+3
 - Stage 1: Single patient cohorts in first 2 dose levels or until relevant toxicity observed, thereafter Stage 2
 - Stage 2: Standard traditional 3+3
- aBOIN(9,48): Same as BOIN(9,48) except for single patient cohorts in first 2 dose levels
- BOIN(9,48): BOIN that stops after 9 patients on doselevel or 48 patients in Total. Patients allocated in cohorts of 3 patients



In summar	V			
	mCRM	ATD	aBOIN	
Estimate of MTD	Estimates at or near actual MTD.	Under-estimation of MTD by design, not as bad as 3+3.	Estimates at or near actual MTD.	
Number of patients	In line with aBOIN	Smallest sample size, 1- 5 patients less than the others	In line with mCRM	
Number of patients on different dose levels	More patients on higher (near MTD) dose levels	Stop earlier: more patients on lower dose levels	More patients on higher dose levels	
Number of patients with DLT	More patients with DLTs (~1)	Less patients with DLTs	More patients with DLTs (~1)	
Pros	Better estimate of MTD (accuracy & precision) Flexibility (cohort sizes may vary) Uses information available before and during trial	Straightforward Nearly memoryless	Better estimate of MTD (accuracy & precision) Flexibility (cohort sizes may vary)	
Cons	Can "go wrong"* if not set-up correctly	Rigid "3+3" & more biased and uncertain		

